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1. ACTIVITIES AND PARTICIPANTS 

This conference was held during the weekend of 14 and 15 February 
1981. The following people participated in the proceedings: George P. Barker 
(Missouri), Stephen Bamett (Bradford and North Carolina State), Jean H. 
Bevis (Georgia State), Joel Brawley (Clemson), Ludwig Elsner (Bielefeld and 
Calgary), Frank J, Hall (Georgia State), Robert Hartwig (North Carolina 
State), Charles R. Johnson (Maryland and South Carolina), Don Jordan (South 
Carolina), Thomas L. Markham (South Carolina), Valerie Miller (South 
Carolina), Michael Neumann (South Carolina), Robert J. Plemmons (Tennes- 
see), George D. Poole (Emporia State), Nicholas J. Rose (North Carolina 
State), Jeffrey A. Ross (South Carolina), Tim Szeliga (South Carolina), and 
Don Warner (Clemson). The meeting was organized by Charles R. Johnson, 
Thomas L. Markham, Michael Neumann, and Jeffrey A. Ross with the 
enthusiastic support of the Department’s Chairman, William T. Trotter. 

The conference was conducted in a classroom and there were no formal 
talks. Instead, the format was to allow each participant who so wished 15-30 
minutes to outline problems of present or continuing interest. Each such 
presentation was followed by a discussion involving the participants. The 
problems that were raised covered a wide range of topics in matrix theory and 
reflected well the different areas of interest of the people present. Towards 
the conclusion of the conference a session was held in which other issues, such 
as recent or forthcoming publications in linear algebra and related areas, 
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forthcoming meetings, etc., were brought by some participants to the atten- 
tion of the others. The climax of this session was a reading of a poem, “A 
Matrix Confederacy,” written during the two days of the conference by the 
man from the Bronte country, Stephen Bamett. 

South Carolina’s warm winter weather undoubtly contributed towards the 
relaxed atmosphere of the gathering. We wish to thank the College of Science 
and Mathematics and its dean, Dr. James Durig, for providing funds for two 
excellent conference meals. In addition, some participants were lodged in 
Capston House, several floors above a sorority. There was not a complaint 
registered from any of these people. 

It was suggested to report this conference in the Letters and to request 
the participants to contribute to it research problems which, however, did not 
have to coincide with the problems raised during the meeting. These research 
questions are presented below. The conference has already brought tangible 
benefits. We are glad to report that L. Elsner, C. Johnson, J. Ross, and J. 
Schonheim have solved a conjuncture and written a paper entitled “On a 
generalized matching problem arising in estimating the eigenvalue variation 
of two matrices.” 

2. RESEARCH PROBLEMS 

The references given in each problem relate only to the question under 
consideration and therefore appear immediately following its text. 

On Ratios of the Spectral Norms of Certain Pairs of Matrices 

Ludwig Elsner 
Fakultiit fiir Mathematik 
Universitiit Bielefeld 
Postfach 8640 
4800 Bielefeld 
Federal Republic of Gemuny 
and 
Department of Mathemutics and Statistics 
University of Calgary 
Calgara, Alberta, Canada T2N lN4 

For two n X n matrices A and B with eigenvalues hi and pi, 1 G i < n, 
respectively, define 

S,(B)= max min I~~-h,l. 
l<i<n l<i=zn 
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Upper bounds for S,(B) have been given, among others, by Bhatia and 
Friedland [l] and Henrici [2]. The bound due to Bhatia and Friedland is 

S,(B) <(2&f)‘- l’nnl/n]]A - B](a, 0) 

where M=max{llAIIs, IIBl12}, and the bound due to Hemici is 

‘0 A 
. . 

. . 

0 A 
id . . . . d 

3 (2) 

1 

where d = II A - B II 2, A = As(A) denotes the departure from normality of A 
(see [2] for precise meaning), and p denotes the spectral radius of a matrix. 
The Bhatia-Friedland bound can be derived from Henrici’s result by noting 
first from U*AU=diag(X,,A,,..., A,)+ T, where T is strictly upper triangu- 
lar,andfrom I]TI],=Aand IIAIl 2 G M. These lead to the inequality 

which is then used in the proof that (2) implies (1). 
The upper bound (1) could be improved if for each n the quantity 

&(n) =SUP 
lITlIz 

II D + T ,I 2 : T is strictly upper triangular, 

D is diagonal and T + D #O (3) 

were to be known. It is possible to show that 1~ E(n) G 2, 42) = 1 and 

s(3)=(3) * 4 ‘I2 The question of the precise determination of (3) appears to be 
connected to the behavior of unitary Hessenberg matrices through the 
following observation. Given an n X n strictly upper triangular matrix, define 
the quantity 

8(n) =sup{ ,lT!;&,z}. (4) 
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0 . . . . 0’ 
1 . 

J= . : . 

. . . 

0 1 0’ 

and the supremum is taken over all upper triangular matrices T’ and diagonal 
matrices D for which T’+ D.l# 0. It can be shown that for n 2 3, 

e(n)=a(n-1). 

Now if T’+ D] is a unitary (Hessenberg matrix), then in most cases 11 T’II 2 > 

IIT’+DJII,, and for n = 2 the supremum in (4) is attained by such a pair. I 
suspect that this is true also for n > 2. 

REFERENCES 

1 R. Bhatia and S. Friedland, Variation of Grassman powers and spectra, Linear 
Algebra Appl., to appear. 

2 P. Henrici, Bounds for iterates, inverses, spectral variation and field of values of 
nonnormal matrices, Numer. Math. 4:24-39 (1962). 

Diagonal Symmetrizability and Unury Operations on M-Matrices 

Charles R. Johnson 

Institute for Physical Science, 
University of Maryland 

Maryland 20742 

and 
Department of Mathematics and Statistics 

University of South Carolina 
Columbia, South Carolina 29208 

Let M and N denote n-by-n nonsingular irreducible M-matrices [3] 
throughout, and let o indicate the Hadamard (or componentwise) [l] product 
of two matrices of the same size. We say that an n-by-n real matrix A is 
diagonally symmetrizable if there exists a diagonal matrix D with positive 
diagonal entries such that AD is symmetric. (It is easy to see that this is 
equivalent to symmetrizability by diagonal similarity, or by left diagonal 
multiplication by a positive diagonal matrix.) Computationally, diagonal 
symmetrizability is not an especially difficult problem, requiring only careful 
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analysis of the relatively simple, and highly redundant, system AD - DA' = 0, 
linear in the diagonal entries of D, or analysis of the cycle structure of A, for 
example. We emphasize here, however, a problem associated with the con- 
nection between diagonal symmetrizability and the minimum eigenvalue of a 
certain unary operation applied to M-matrices. 

It is known [2] that the matrix M 0 N-' is again an M-matrix, and 
furthemlore that if M is diagonally symmetrizable, then X ,( M 0 M- ' ) = 1, 
where X, denotes the necessarily real and nonnegative “minimum” of the 
Perron-Frobenius eigenvalue of an M-matrix. The problem we emphasize here 
is to prove the converse, namely: if X,(Mo M-l)= 1 then M is diagonally 
symmetrizable. We also conjecture that, in general, 0~ h,( M 0 M)G 1, with 
equality being attained in the right-hand inequality if and only if M is 
diagonally symmetrizable. This would suggest a measure of “near” diagonal 
symmetrizability, namely h,( M 0 Mp') being large (close to 1). A further 
question is whether there is a positive minimum (as a function of n) for 
X,( MOM-') over irreducible M-matrices, and, if so, what its nature is. 

A simple calculation yields that for a general n-by-n nonsingular matrix A, 
the row sums of A-’ 0 A are just the diagonal entries of A-‘Ar (which is I if 
and only if A is symmetric). This suggests (upon further calculation) that if 
h,(Mo Mp') = 1 and MO M-'r = x, then the diagonal matrix would symme- 
trize M would be one whose diagonal entries are the components of x (which 
may be taken to be positive). An interesting side issue suggested here would 
be the study of qua&symmetric matrices: those nonsingular A for which 
A-’ 0 A has all row sums equal to 1. If Aii is the (n - l)-by-(n - 1) submatrix 
of A obtained via deletion of row i and column i, the condition just mentioned 
is algebraically equivalent to zT= i( - l)iti aiidet Aii = Z~Xl=,(-l)ifiuiidet A,,, 
i=l , . . . , n (the right and hand side is, of course, det A for each i), except that 
this condition on A may be studied even in the singular case. 

Finally, we note that the study of diagonally symmetrizable M-matrices is 
entirely general, since the question for an arbitrary real matrix A may be 
reduced to one for a corresponding M-matrix. First, check to see if A = (aii) is 
sign-symmetric (i.e. u,~ and aji have the same sign, either both positive, both 
negative, or both zero), and if so, add a sufficiently large multiple of the 
identity to the comparison matrix of A (take absolute values componentwise 
and insert minus signs off the diagonal) to produce and M-matrix M. Then A 
will be diagonally symmetrizable if and only if M is. 

REFERENCES 

1 C. R. Johnson, Hadamard products of matrices, Linear and Multilinear Algebra 
1:295-307 (1974). 
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2 C. R. Johnson, A Hadamard product involving M-matrices, Linear and Multilinear 
Algebra 4:261-264 (1977). 

3 R. J. Plemmons, M-matrix characterizations I-Nonsingular M-matrix, Zkeu~ 
Algebra Appl. 18:175-188 (1977). 

Spectrally Dominant Generalized Matrix Nmms and Powers lnequalities 

Charles R. Johnson 

A generalized matrix nom (gmn) G is simply a vector norm on M,(C), the 
n-by-n complex matrices [l]. Specifically, this means that G: M,(C) + R 

satisfies for all A, BE M,,(C) 

G(A)>O, and G(A)=0 iff A=O, (I) 

G@A)= aG(A) forall cuEC, (2) 

and 

G(A+B)<G(A)+G(B). (3) 

If, in addition, G satisfies 

G(AB)<G(A)G(B) (multiplicativity) , (4 

then G is called a matrix norm. 
Let p(A), AE M,,(C), denote the spectral radius (maximum absolute 

value of the eigenvalues) of A. A gmn G is called spectrally dominant if 

P(A)=(A) for all AE M,(C). 

It is well known that matrix norms are spectrally dominant, but many gmn’s 
which are not matrix norms are also spectrally dominant. Several characteriza- 
tions of spectrally dominant gum’s have been given [l, 2,3], and all (neces- 
sarily) involve some form of weakened multiplicativity. In particular, G is a 
spectrally dominant gmn if and only if for each AE M,(C) there is a constant 
(Ye (depending only upon G and A) such that for all positive integers K, 
G(Ak)< aAG(A)k [3]. The question we emphasize here is whether or not the 
constant in the theorem just mentioned can be taken to be uniform in 
(independent of) A. That is, we wish to give an example of spectrally 
dominant gmn G for which the (minimum) (Y~‘S are unbounded above, or 
prove that if G is a spectrally dominant gmn, then there is constant (Y, 
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depending only upon G, such that G( Ak)< aG( A)k for all positive integers k 
and all AE M,(C). The problem, of course, is that it is difficult to give any 
notion of the aA which is demonstrably continuous in A. 

REFERENCES 

1 C. R. Johnson, Mukiphcativity and compatibility of generalized matrix norms, 
Linear Algebra Appl. 16:25-37 (1977). 

2 C. R. Johnson, Locally compatible generalized matrix norms, Numer. Math. 
27:391-394 (1977). 

3 C. R. Johnson, Power inequalities and spectral dominance of generalized matrix 
norms, Linear Algebra Appl. 28:117-130 (1979). 

A Unification Problem Concerning an Inequality of Oppenheim 

Thomas L. Markham 

Department of Mathematics and Statistics 
University of South Carolina 
Columbia, South Carolina 29208 

1. A Brief Look at the Background of the Problem. Suppose each of A 
and B is an n X n matrix with entries from the field of complex numbers. The 
Hadamard product of A and B is the n X n matrix A * B =(a iibii). We shall 
not make an attempt to define all the terms we use, since most of these terms 
are standard and are readily accessible in the list of references which we give. 

In 1930, Sir Alexander Oppenheim proved the following result. 

THEOREM 1 [5, Theorem 21. Suppose each of A and B is an n X n 
positive semidefinite matrix. Then det(A * B)~(ll:,,a,,)det B. 

The author proved the following analogue of Oppenheim’s inequality. 

THEOREM 2 [4, Theorem 21. If each of A and B is an n X n tridiagonul 
oscillatory matrix, then det(A * B)>(fl:=,ai,)det B. 

Subsequently, the author was able to unify Theorems 1 and 2 via a class of 
matrices defined by Karl Goldberg [3]. 

In 1964, Lynn stated another result of this type. For notation, we shall 
follow that given in [2]. If A is an H-matrix, the H(A) denotes the comparison 
matrix of A. 
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THEOREM 3 [2]. Zf A and B are n X n H-matrices, then det H(A *B)> 

nF=i]uii]det H(B). 

Finally, Fiedler and Ptak have given yet another analogue. 

THEOREM 4 [ 1, Theorem 4.11. Suppose B is un n X n matrix where n 22. 

The following properties of B =( b,,) are equivalent: 

(i) There exists a diagonal matrix D with positive diagonal elements such 

that the matrix C = D-’ BD satisfies 0 # 1 cii 1 2 1 cik I for all indices i and k. 

(ii) Zf A is an H-matrix, then A * B is an H-matrix and 

det(H(A*B))> i ]b,,)det H(A). 
i=l 

. 2. The Problem. What is the appropriate setting for these results? Is 
there a unification theorem from which Theorems 1-4 will follow? 

REFERENCES 

M. Fiedler and V. Ptak, Diagonally dominant matrices, Czechoslovak Math. J. 
17(92):420-433 (1967). 
M. S. Lynn, On the Schur product of the H-matrices and non-negative matrices, 
and related inequalities, Proc. Cambridge Philos. Sot. 60: 425-431 (1964). 
T. Markham, Class G, and a unification problem, Linear Algebra Appl., 39:197-204 
(1981). 
T. Markham, A semigroup of totally nonnegative matrices, Linear Algebru Appl. 
3: 157-164 (1970). 
A. Oppenheim, Inequalities connected with definite Hermitian forms, J. London 
Math. Sot. 5. 

Morwtonicity-Type Conditions for Solving Singular Systems by Zterative 

Methods 

Michael Neumann 

Department of Mathematics and Statistics 

University of South Carolina 
Columbia, South Carolina 29208 

1. Motivation. A recent Bell Laboratories report [3], in which conges- 
tion and overload in traffic systems are analysed through network control 
theory, concludes that the use of iterative methods for solving singular 
consistent systems of linear equations is probably the most feasible technique 
for obtaining steady-state vectors for large network problems. In earlier works 
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[3] and [4] (see also [l, Chapters 6-91 where further background material can 
be found), in which the object of investigation is iterative methods for singular 
systems, it was suggested that a particularly attractive application of these 
methods from the computation point of view would, indeed, be the computa- 
tion of stationary distribution vectors for Markov chains. It is thus interesting 
to note that the Bell Laboratories report does not mention these earlier 
publications. 

2. The Problematic. The works [l], [3], and [4] mentioned above, as well 
as others (see [2] and [8]), demonstrate that when one tries to extend 
monotonicity-type results (an n X n matrix A is said to be monotone if for any 
vector x such that Ax 2 0 it follows that x 2 0 or, equivalently, A is nonsingu- 
lar and A-’ > 0) for the convergence of iterative schemes for nonsingular 
systems to the singular case, one of the following situations is encountered: 

(1) There is more than a single possibility for generalization. Moreover, 
while one generalization leads to sufficient conditions for convergence, another 
will only lead to some necessary ones, but seldom are both present. As an 
example we cite the different extensions to the notion of regular splittings 
(introduced in [8] for nonsingular systems) considered in [4] and [S]. 

(2) Loss of necessary conditions for convergence. As an illustration con- 
sider the example of a weak regular splitting for an M-matrix with “property 
c” given in [S]. Further, in that paper it is shown that only much stronger 
assumptions on the coefficients matrix guarantee the existence of some of the 
more important necessary conditions for convergence. (For nonsingular sys- 
tems weak regular splittings were introduced in [6].) 

(3) Loss of comparison for the asymptotic convergence rate of two 
nonegative iteration matrices induced by two different splittings of the same 
coefficients matrix. We mention the rather complete breakdown of the 
Stein-Rosenberg criterion exhibited in [2]. 

3. Possible Resolution. The generalization to the singular case of regular 
splitting suggested by Meyer and Plemmons [4] appears demanding in terms 
of assumptions. However it is felt that a further consideration of these 
authors’ approach may lead to a resultion to some of the abovementioned 
manifestations. More specifically, answers could be extracted from the material 
in [4] with the achievement of a better understanding of the relationship 
between complementary subspaces associated with splitting of matrices 
possessing some generalized monotonicity properties. 

REFERENCES 

1 A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical 
Sciences, Academic, New York, 1979. 
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Nonnegative Cone-Containment Problems 

George D. Poole 
Dqartment of Mathematics 

Emporia State University 

Emporia, Kansas 66801 

and 

Stephen L. Campbell, 
Department of Mathematics 

North Carolina State University 

Raleigh, North Carolina 27607 

The research in matrix iterative analysis and solvability of nonnegative 
linear systems Ax = b has promoted a great deal of study on the ring N, of 
nonnegative square matrices. In fact, the amount of “spin off research” on N, 
was recently underscored by the text by Berman and Plemmons [l]. 

In particular, there are several nonnegative-type problems which have 
appeared in the literature recently which are indeed related. By sharing these 
problems and offering a few remarks as to how we think they might be 
interrelated, perhaps someone can formulate the single problem whose solu- 
tion leads to the solution of all the problems. 

PROBLEM 1. Suppose V={v1,v2,...,v,}~R~, where R”, is the non- 
negative orthant in the real n-dimensional space R”. Let C(V) denote the 
polyhedral cone [l, p. 21 generated by nonnegative linear combinations of 
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elements in V. Determine a minimal set of vectors in V, say V, = {ok,, 
vkZ> * * *, ok,}, for which C(V) = C(V,). The unique value of t is called the cone 
dimension of C(V) [2]. 

PROBLEM 2. Consider the nonnegative linear system Ax = b, A 20, 
b 80, x 20. Determine when the system is consistent, and whenever it is 
consistent, determine a solution. See [l] for information which relates A- 
monotone matrices, weakly monotone matrices, and nonnegative rank factori- 
zations to nonnegative solutions of Ax = b. 

PROBLEM 3. Determine whether AE N,, has a nonnegative rank factori- 
zation, and if so exhibit one. See [2] and [3]. 

PROBLEMS. PE N, is prime if P is not monomial [l, p. 671, and P = AB, 
AE N,,, BE N,, imply either A or B is a monomial. Determine the primes (or 
nonprimes) in N,,. See [l, pp. 75-811. 

Now each of the four problems described above may be described in 
terms of “cone containment.” In the first problem, the task of determining a 
minimal set V, and the cone dimension t amounts to determining a minimal 
subset of V whose cone contains C(V). Actually, V, will be unique if V, 
contains no two vectors which are scalar multiples of each other. 

In the second problem, Ax = b is consistent if the cone generated by the 
columns of A contains the cone generated by b. 

In the third problem, suppose rank(A)= t and N denotes the rows of A. 
Then A has a nonnegative rank factorization iff there exists a set M of t 
nonnegative vectors such that C(N) c C( M ), where the cone dimension of 
C(M) is t [2]. 

In the fourth problem, the geometrical or cone-containment interpretation 
of being prime is this: Suppose R and C are the cones generated by the rows 
and columns of AE N,, respectively. Let P denote the cone R; , and let S, W 
be polyhedral cones such that R C S c P and C C W c P. Then A is prime if 
either S or W must necessarily equal P. 

Tam’s [4] work should be read to obtain further relationships among the 
four problems described above. 
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